
1

Finding Multiple Maximally Redundant Trees in
Linear Time

Gábor Enyedi and Gábor Rétvári
Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Magyar tudósok körútja 2., Budapest, Hungary, H-1117
Email: {enyedi,retvari}@tmit.bme.hu

Abstract—Redundant trees are directed spanning trees, which
provide disjoint paths towards their roots. Therefore, this concept
is widely applied in the literature both for providing protection
and load sharing. The fastest algorithm can find multiple re-
dundant trees, a pair of them rooted at each vertex, in linear
time.

Unfortunately, edge- or vertex-redundant trees can only be
found in 2-edge- or 2-vertex-connected graphs respectively.
Therefore, the concept of maximally redundant trees was intro-
duced, which can overcome this problem, and provides maximally
disjoint paths towards the common root. In this paper, we propose
the first linear time algorithm, which can compute a pair of
maximally redundant trees rooted at not only one, but at each
vertex.

Index Terms—redundant trees, maximally redundant trees,
independent trees, colored trees, recovery trees, linear, recovery,
load sharing

I. INTRODUCTION

Communication has changed our life in the last few decades.
Nowadays, people are reachable almost everywhere and it is
possible to find almost any information in no time. All these
new possibilities are provided by the communication networks,
which influence our life more and more significantly. More-
over, it seems that this trend will not change; developments
like Google Chrome OS or Microsoft Windows Azure will
bring us cloud computing in some years, making the whole
economy completely dependent on these networks.

Naturally, directly connecting all the resources in a commu-
nication network is impossible, therefore it is always needed
to find decent path from the source to the destination(s).
Obviously, it does matter, which paths are found. Finding
link- or node-disjoint paths is a common desire for multiple
reasons. Mostly, these disjoint paths are used for resilience,
for providing connectivity even after a failure (e.g. [1], [2],
[3]), but some proposals were taken, where disjoint paths are
used for distributing the load in the network(e.g. [4]).

An important and widely studied possibility for finding
disjoint paths is the concept of redundant trees. A pair of edge-
or vertex-redundant trees rooted at a given root vertex of an
undirected connected graph is a pair of directed spanning trees,
directed in such a way that there is a path from each vertex to

G. Rétvári was supported by the János Bolyai Fellowship of the Hungarian
Academy of Sciences.

Figure 1: A pair of vertex-redundant trees rooted at vertex d.

the root on both trees and the two paths on these two trees are
edge- or node-disjoint respectively. A pair of vertex-redundant
trees rooted at d is depicted on Figure 1.

Redundant trees (also known as colored trees, independent
trees and recovery trees) are well studied in the literature.
It was first proven by Edmonds [5] that it is possible to
find a pair of edge-disjoint directed spanning trees for a 2-
edge-connected digraph. Later, Itai and Rodeh gave a linear
time algorithm for finding both edge- and vertex-redundant
trees in [6] for avoiding failures in computers with multiple
CPUs. This concept was later improved by minimizing the
path lengths [7], [8] and by algorithms for finding three and
four trees in 3- and 4-vertex-connected graphs [9], [10], [11],
[12], [13].

Médard et. al. applied this concept first on the field of
communication [1]. Moreover, in their work they generalized
the the way of computation. Based on this generalization,
Xue et. al. endowed redundant trees with various QoS ca-
pabilities [14], [15], [16], [3], [17], [18]. Other approaches
gave the possibility of computing redundant trees based on
only local information [19], [20], [21], [22], [23], [24].

Even the first technique, proposed by Itai and Rodeh, com-
putes redundant trees in linear, O(|E(G)|) time, where |E(G)|
is the number of edges. In telecommunications, however, the
task is given somewhat differently: usually a pair of redundant
trees rooted at each node is needed. This is because a node
usually needs to communicate with all the other nodes in
the network. Therefore, computing all the trees is not linear,
have O(|V (G)||E(G)|) complexity, where |V (G)| denotes the
number of vertices, the nodes in the network.

On the other hand, observe that several networks base on
hop-by-hop forwarding paradigm, thus knowing the whole
redundant trees is not needed for these networks. In this special

2

Figure 2: A pair of maximally redundant trees rooted at vertex
d.

case, even a faster distributed algorithm is proposed in [25],
which computes only these next hops along the redundant
trees, but for all the trees rooted at each node.

Note that distributed manner in the field of redundant trees
typically means token coordinated distributed computation,
based on only local information. Hence, these algorithms make
communication an essential part of the computation itself.
In contrast, the technique presented in [25] supposes that
the complete topology of the network is already explored
(there is a link state routing protocol, like OSPF or IS-IS
in the background), and computations in different nodes are
made asynchronously without the coordination of potentially
perishing tokens. This algorithm is distributed in the way that
the nodes know only the edges going out from them, the next
hops, but none of them knows any of the trees completely;
this information is distributed in the network.

Unfortunately, edge- or vertex-redundant trees have a seri-
ous drawback: since these trees provide two edge-disjoint or
vertex-disjoint paths respectively, the network must be 2-edge-
connected or 2-vertex-connected in order to find such trees
with an arbitrary root. Since networks are usually designed
with a redundant manner, fulfilling this requirement seems
possible at first, albeit redundancy can be easily lost when a
failure occurs. Moreover, several real networks does not have
2-vertex-connected topology, even when they are intact (see
e.g. Abeline, AT&T in [26] or Italian backbone in [27]).

Therefore, the concept of maximally redundant trees was
introduced [28]. A pair of maximally redundant trees rooted at
a given root vertex of an undirected graph is a pair of directed
spanning trees directed in such a way that there is a directed
path from each vertex to the root on both trees and the two
paths on these trees has the minimum number of edges and
vertices in common. This means that only the unavoidable cut-
edges and cut-vertices are on both paths, therefore maximally
redundant trees provide maximum redundancy in arbitrary
connected graph.

A pair of maximally redundant trees rooted at d is depicted
on Figure 2. As it can be observed, vertices b and e together
with the edge between them is unavoidable, so both paths from
a or f contain them.

The main contribution of this paper is that we first present
a distributed linear time algorithm for finding a pair of
maximally redundant trees rooted at not only one, but each
vertex. This algorithm is an extension of the one presented

in [25]. We suppose that there are |V (G)| processors (these
are typically the nodes of the network, |V (G)| denotes the
number of vertices again), all the processors have exactly the
same graph as input (e.g. the topology of the network, with
vertices and edges given in the same order) and each processor
computes only the edges of the trees going out from its vertex.
If the input graph is not the same for all the processors, some
pre-computation may be needed, which is not in the scope of
this paper.

Moreover, we present some heuristics as well, which do
not improve the complexity of our algorithm, but significantly
decrease the lengths of paths along the maximally redundant
trees towards their roots. Furthermore, by improving IP fast
reroute technique Lightweight Not-via, we present a potential
applicability of distributed maximally redundant tree compu-
tation.

Since in this paper we describe a graph algorithm, we need
some notations, which we define here. We deal only with
simple graphs, where no multiple edges or loops exist. Thus,
a simple graph G is a pair (V, E), where V is the set of
vertices and E is the set of edges. If graph G is undirected,
then E ⊆ {{v1, v2} : v1, v2 ∈ V }, so elements are unordered
pairs, denoted by {v1, v2} (v1, v2 ∈ V). Otherwise, if G is
directed, E ⊆ V × V (× denotes the Cartesian product), so
elements are ordered pairs, denoted by (v1, v2) (v1, v2 ∈ V),
where v1 is the source and v2 is the target. Moreover, V (G)
and E(G) denotes the set of vertices and edges of graph G.
The number of elements of a given set S is denoted by |S|.

The rest of this paper is organized as follows. Since our
algorithm is divided into three phase, we deal with the first
phase, which is special DFS traversal, in the next section.
In Section III, using this DFS traversal, an intermediate
digraph is computed. Maximally redundant trees themselves
are computed in Section IV. In Section V, some heuristics are
presented for minimizing the lengths of paths on the maxi-
mally redundant trees found. The quality of this optimization is
discussed in Section VI. In Section VII, we present a possible
way of applying these trees for IP fast reroute. Finally, we
conclude our results.

II. PHASE I – DFS

As it was discussed above, our algorithm is divided into
three phases. The first phase is a special Depth First Search
(DFS) traversal for computing DFS and lowpoint numbers.
The DFS number of a given vertex v (denoted by Dv) is
the number of vertices visited by the DFS traversal before
v. Therefore, the starting vertex has 0 as a DFS number. The
lowpoint number of a given vertex v (denoted by Lv), which
is not the starting point of the traversal, is the minimum of
the lowpoint numbers of its children in the DFS tree and the
DFS numbers of its neighbors. The vertex, where the DFS was
started from, has no lowpoint number.

Algorithm 1 presents this modified DFS traversal, needed
for computing the maximally redundant trees. A sample graph
and a possible procession of Algorithm 1 is depicted on
Figure 3. Observe that vertex b got the lowpoint number
from its immediate parent, since the edge between e and b

3

Figure 3: A possible DFS, the DFS and the lowpoint numbers.

is a cut-edge. Note that this algorithm can be implemented
by slightly modifying the standard DFS traversal algorithm,
thus its complexity is O(|V (G)|+ |E(G)|) = O(|E(G)|) (in
connected graphs |V (G)| − 1 ≤ |E(G)|).

Algorithm 1 Revised DFS for graph G and root vertex r

1: Start a DFS traversal from root r on the graph. Set DFS
number Dv at each vertex v, so that Dv denotes the
number of vertices visited before v.

2: Recursively compute the lowpoint number for each vertex
v as min(L,D), where L is the smallest lowpoint number
of v’s children and D is smallest DFS number among v’s
neighbors.

3: For each vertex v, associate a directed edge (v, x), where
x is the vertex from v received its lowpoint number. If it
is possible, choose an arbitrary child as x

Now, we define a technical lemma, which will be necessary
in the sequel. Note that there is a similar lemma presented
in [29]. Observe that this lemma basically tells us that walking
down on the DFS tree by always selecting the child with the
maximum lowpoint number leads to a neighbor of an ancestor.

Lemma 1: Let x be a vertex of an undirected connected
graph. Do a DFS traversal and start it at r 6= x. Let the DFS
parent of x be p. Than, Lx ≤ Dp. If x is in a 2-vertex-
connected component, which contains an ancestor of p, then
Lx < Dp. Moreover, walking down as long as possible along
the DFS tree from x by always selecting a child c, such that
Lx = Lc, leads to a successor with such a neighbor y in G
that

• if Lx < Dp, y is a DFS ancestor of p or
• if Lx = Dp, y = p.
Remark: Note that it is possible that x has no child c with

Lx = Lc. Than we “walk down” zero hops along the DFS
tree and y is a neighbor of x.

Proof: Since p is a neighbor of x, x gets its lowpoint
number from p, if there is no better choice, so Lx ≤ Dp.
Now, suppose that x is in a 2-vertex-connected component,
which contains an ancestor of p. Consider only this 2-vertex-
connected component, a subgraph of G, let it be G′. G′ is
2-vertex-connected. Let an ancestor of p in G′ be a. There
are two node-disjoint paths from x to a, so one of them does
not contain p. Naturally, there must be a path from a to p,
not containing x (the path on the DFS tree). Combining these
two paths yields a walk from x to p not containing the edge

between x and p. Thus, p is in G′.
Let the DFS subtree in G′ rooted at x be T (so x and its

successors in G′ are in T). The vertices of T makes up a subset
of the vertices of G′. Since there are at least 2 vertices outside
T (p and a) and G′ is 2-vertex-connected, there must be two
{m, y} edges, where m ∈ V (T) and y ∈ V (G′) \ V (T), and
the vertices in V (G′) \ V (T) of these two edges are not the
same. Therefore, let {m, y} be an edge, where y 6= p. Since
DFS traversal has the property that the neighbor of a vertex is
either an ancestor or a successor, and y is not a successor of
x, y must be an ancestor of both m and x. Moreover, since
y 6= p, y is an ancestor of p too. Thus, Lx ≤ Lm ≤ Dy < Dp.

Walking down along the DFS tree, and always selecing a
child with lowpoint number Lx, leads to a successor s with a
neighbor n, such that Dn = Ls = Lx (the lowpoint number
Lx came from n). Since n must be an ancestor of s (DFS
traversal), n must be an ancestor of x too. If Lx < Dp, n 6= p,
so n must be an ancestor of p. Naturally, if Dp = Lx = Dn,
n = p.

III. PHASE II – GENERALIZED ADAG

In the second intermediate phase, a spanning digraph named
Generalized Almost Directed Acyclic Graph (GADAG) is
computed. This graph is a generalized version of the Almost
Directed Acyclic Graph (ADAG) [28], and can be found in not
only 2-vertex-connected, but arbitrary connected graphs. The
naming comes from the fact that there is always a single vertex
r in an ADAG, such that removing r transforms the graph
into a Directed Acyclic Graph. In this section, first we give a
formal definition of the Generalized ADAG, than we discuss
its aspects and finally we present a linear time algorithm
computing a spanning GADAG in a connected graph.

Definition 1: Let a digraph be weakly n-vertex-connected,
if replacing its directed edges with undirected edges produces
an n-vertex-connected undirected graph. Let a vertex v of a
digraph be a weak cut-vertex, if the digraph is not weakly
connected without v. Let an edge e of a digraph be a weak
cut-edge, if the digraph is not weakly connected without e.

Remark: Note that a weak cut-edge is a directed edge with
two weak cut-vertices as endpoints.

Definition 2: Let D be a strongly connected digraph with
vertex r. Let the first weak cut-vertex rx along the paths from
vertex x 6= rx, x 6= r to r be the local root of x. If there
is no cut-vertex between x and r (so x and r are neighbors
or are in the same weakly 2-vertex-connected component),
then rx = r. Vertex r has no local root. Let C be the set
of the maximum (here means inextensible) weakly 2-vertex-
connected components of D. For all vertices x ∈ V (D) \
{r}, add x and rx with the edges between them to C as a
component, if there is no A ∈ C, so that x, rx ∈ V (A). Let
rA ∈ V (D) be the local root of component A ∈ C, if rA = rx

for all x ∈ V (A) \ {rA}. (Note that for all paths from A to r,
rA is the last vertex in A.)

D is a Generalized ADAG (GADAG) with r as a root, if
for all x ∈ V (D) there is a directed cycle in D containing
both x and rx, and A ∈ C is a DAG without rA. The set of
components of GADAG D is set C.

4

Figure 4: A GADAG with one component rooted at vertex d

Figure 5: A GADAG with three components rooted at vertex
d

Although one may find this definition a bit complicated at
the first time, it is not so difficult to understand.1 As the first
example, consider the GADAG depicted in Figure 4. Since this
digraph is 2-vertex-connected, set C has only one element,
the complete GADAG itself. Since there is a directed cycle
for each vertex, and all these cycles contains d, this digraph
is definitely a GADAG.

Second, in Figure 5 a bit more complicated situation is
presented. This graph is not 2-vertex-connected any more, but
it is made up by two weakly 2-vertex-connected components,
a, b, f (let it be component X) and c, d, e (let it be component
Y). Since there is no weakly 2-vertex-connected component,
which contains b and its local root e, so C also contains b
and e with the two edges between them as a component (let
it be component Z). It is easy to see, that rc = re = d,
ra = rf = b, rb = e, rX = d, rY = b and rZ = e. Trivially,
for each vertex there is a directed cycle containing the vertex
and its local root. Moreover, without the local root, any of
the three elements of C is a DAG, so the graph depicted in
Figure 5 is a GADAG with d as a root.2

Algorithm 2 computes the spanning GADAG of an arbitrary
connected undirected graph. Before turning to deal with the
specifics of this algorithm, let us discuss how it produces
spanning GADAG depicted in Figure 5 using DFS traversal
depicted in Figure 3. The algorithm starts from a given vertex,
which is now vertex d, the root of the generated spanning
GADAG. First, computes the DFS tree, the DFS numbers and
the lowpoint numbers using Algorithm 1. Next, since d has a

1Ones, who are familiar with the concept of ADAG, may think on a
GADAG as several ADAGs “glued” together at the weak cut-vertices which
are the roots of these components.

2Note that this is a very special case, since all the vertices of this graph
could be the root.

child which is not ready, the algorithm gets to branch at Line 7.
By walking down along the DFS tree (Line 9), the ear (see
Definition 3) containing e, c is found. Therefore, (d, e), (e, c)
and (c, d) are added to D. The vertices of this ear are pushed
on the top of the stack, so now it contains e, c. Moreover,
c.ready and e.ready are set to true, c.localRoot = d and
e.localRoot = d. Since d has no more neighbor, which is
not ready, the next vertex is removed from the top of stack
S, which is e. Vertex e has a child, which is not ready, so
the next ear found is b alone (b got its lowpoint number
from e) and edges (e, b) and (b, e) are added to D. Now,
b.ready = true, b.localRoot = e and S contains b, c. The
next element processed is b, ear f, a is found, f.ready and
a.ready are set to true, (b, f), (f, a) and (a, b) are added to
D. Although stack contains f, a, c, all the vertices are ready,
so the algorithm terminates.

Definition 3: Let an ear be a sequence of vertices we push
to the stack at the same time (Line 12 or Line 27).

Now, we prove that Algorithm 2 terminates, computes a
spanning GADAG, computes the local roots and its complexity
is linear. The algorithm terminates, when both branches at
Line 7 and 22 terminate.

Lemma 2: The branches at Line 7 and 22 always terminate.
Proof: First, we use mathematical induction to show all

DFS ancestors of an arbitrary ready vertex are always marked
ready. Initially, this is true, since only r is ready. Than, after
finding an ear either at line 7 or at Line 22, the claim remains
true, since all the ancestors of a vertex in the ear became
ready too.

At the end of the branch at Line 7, we always arrive to
current or to an ancestor of current, thanks to Lemma 1,
so the branch at Line 7 indeed terminates. On the other hand,
in the branch at Line 22 we always move upwards in the
DFS tree, heading towards r. Since r is ready, a ready
vertex is always reached finally, so the branch at Line 22 also
terminates.

Lemma 3: The output graph of Algorithm 2 is a spanning
GADAG of G rooted at r.

Proof: Let the output graph be D, and create C the
set of components of D as described in Definition 2 (it is
possible even if D is not a GADAG). First, we deal the most
complicated part of the proof, namely that for all A ∈ C,
without rA, A is a DAG. If A has only two vertices, it is
trivial. Now, suppose that |V (A)| > 2, which means that A is
weakly 2-vertex-connected.

Remove rA from A and let this new graph be A′. Observe
that in both cases when Algorithm 2 adds edges to A′, the
endpoints of the edges in the ear appear exactly in the same
order both in the edge and in the stack. Consider an ear the
algorithm finds either at Line 12 or Line 27. This ear starts
at current and terminates at another vertex, say, x. Since
rA 6∈ V (A′), claims about current, where current = rA

or claims about x, where x = rA are not important (and not
always true). Otherwise, the following claims hold for current
and x:

• current 6= x (at branch 7, this is true due to Lemma 1,
and at branch 22 because all the children have been made
ready by branch 7)

5

Algorithm 2 Finding a spanning GADAG for graph G and
root vertex r. The algorithm also computes the local root of
each vertex.

1: Compute a DFS tree using Algorithm 1. Initialize the
GADAG D with the vertices of G and an empty edge
set. Create an empty stack S. Set the ready bit at each
vertex to false.

2: Set localRoot at each vertex to NULL
3: push r to S and set ready bit at r
4: while S is not empty
5: current← pop S
6: for each children n of current
7: if n is not ready then
8: while n is not ready
9: let e be the vertex, where n got its low-

point number from
10: n = e
11: end while
12: Let the found vertices be x0 → x1 →

... → xk, where xk is ready, and x0 is the
neighbor of current. Set the ready bit at
x0, x1, ..., xk−1 and push them to S in reverse
order, so eventually the top of the stack will
be x0, x1, ..., xk−1

13: Add edges in the path current→ x0 → x1 →
...→ xk to D.

14: if current = xk then
15: Set localRoot to current at

x0, x1, ..., xk−1
16: else
17: Set localRoot to current.localRoot at

x0, x1, ..., xk−1
18: end if
19: end if
20: end for
21: for each neighbor n of current which is not a child
22: if n is not ready then
23: while n is not ready
24: let e be the parent of n in the DFS tree
25: n = e
26: end while
27: Let the found vertices be x0 → x1 →

... → xk, where xk is ready and x0 is the
neighbor of current. Set the ready bit at
x0, x1, ..., xk−1 and push them to S in reverse
order, so eventually the top of the stack will
be x0, x1, ..., xk−1.

28: Add edges in the path current→ x0 → x1 →
...→ xk to D

.

29: Set localRoot to xk.localRoot at
x0, x1, ..., xk−1.

30: end if
31: end for
32: end while

• current has already left the stack and
• x is still on the stack (since it has a neighbor, the last

vertex of the ear, which is not ready, which is either a
child or which got the lowpoint number from x).

Now, let V = v1, v2, ..., vn be the sequence of vertices as they
leave the stack S. Observe that if there is an (vi, vj) edge
in A′, then vi and vj was either in the same ear or (vi, vj)
was an end of the ear (one of the vertices was current or
x). According to the argumentation above, when we add edge
(vi, vj) to A′ one of the following two cases hold

• vi has already left the stack when we push vj or
• vi appears above vj in the stack.

Thus, vi will leave the stack before vj , which means i < j.
Therefore, we have that for each (vi, vj) in A′, i < j holds,
so V is a topological ordering, hence A′ is a DAG.

Next, we use mathematical induction in order to prove that
D is strongly connected, and for each A ∈ C, v ∈ V (A), there
is a directed cycle, which contains both rA and v. Initially,
when D contains only r, the claim is true. Suppose that after
adding some ears it is still true.

Now, we add a new ear from current to x. There must be a
path from r to current and one from x to r thanks to strong
connectivity, so strong connectivity is conserved. Moreover,
the path from v to rv and the path from rv to v must be vertex-
disjoint, since otherwise there would be a directed cycle in A
not containing rv = rA. Therefore, combining these two paths
makes up a cycle containing both v and rv .

Now, we have seen that D is a GADAG. In order to prove
that this is a spanning GADAG of G, it is needed to observe
that all the vertices of G becomes ready. Since a ready vertex
leaves the stack sooner or later, a DFS child of a ready vertex
must be also ready when Algorithm 2 terminates. Since the
root of the DFS tree is ready, and since the graph and the
DFS tree is connected, all the vertices must be ready, when
the algorithm terminates.

Lemma 4: Algorithm 2 computes the local roots for all
vertices correctly.

Proof: Observe that the first vertex of a component A
leaving S is rA. Moreover, each neighbor n ∈ V (A) of rA

has lowpoint number Ln = DrA
, since either rA = r or all

path to a DFS ancestor of rA contains rA as a cut-vertex.
Moreover, current can not be the same as xk for ears, which
are found at Line 22, since those were already found at Line 7.
Thus, the localRoot is set properly in the case of entering into
a new component.

Inside a component, current and xk cannot be the same,
since

• if the ear is found at Line 7, xk is an ancestor of current
thanks to Lemma 1 and

• if the ear is found at Line 22, all of the children of xk is
already ready.

Therefore, at most one of the endpoints can be rA. At Line 12
xk is an ancestor of current (Lemma 1), at Line 27 current
is an ancestor of xk (since we get to a successor and walk
up), so the local root is set properly both at Line 14 and at
Line 29.

6

Naturally, there is no ear between two components, since
there are a cut-vertex between them.

Lemma 5: The computational complexity of Algorithm 2 is
O(|E(G)|).

Proof: Each vertex is pushed to S and popped from
S once, so the most important part of the algorithm is at
Line 7 and at Line 22, where the ears are found. Either
walking down along the DFS tree, and always selecting the
pre-computed vertex, which the lowpoint number came from,
or walking upwards selecting the parent takes O(|V (G)|) time
all together.

Since a DFS traversal is needed, and the graph is supposed
to be connected, the overall complexity is O(|E(G)|).

IV. PHASE III – COMPUTING MAXIMALLY REDUNDANT
TREES

Previously, an intermediate graph representation called
GADAG was discussed. In this section we use this digraph in
order to compute the maximally redundant trees themselves.

As it was discussed previously, our algorithm is distributed
in such a way, that it does not compute all the maximally
redundant trees, but only the edges belonging to the trees going
out from a given vertex. Although interleaving these edges
makes up all the maximally redundant trees, it is not necessary
for most of the networks, since usually only the next hops are
needed.

Our algorithm is on the traces of [25], where an algorithm
computing redundant trees for a 2-vertex-connected graphs
was proposed. In contrast, this new algorithm can be consid-
ered as an extension of the one in [25]; in the first phase we
compute the edges belonging to the trees rooted at vertices,
which are in the same 2-vertex-connected component (this is
almost the same as in [25]), than we find the cut-vertices,
which the other vertices can be reached throw, and use the
previously computed edges for the remaining trees. This idea
is presented in Algorithm 4.

Before turning to discuss the issues of this algorithm, let
us present a simple example. Consider the previous graph
depicted in Figure 3. As we know, the GADAG rooted at
d is depicted in Figure 5. Note that since G and the global
root (which in this special case is vertex d) are the same for
each node (processor), each node computes exactly the same
GADAG. Next, consider the processor of f and compute the
edges going out from f . We split rf , which is vertex b to b+

and b−, so that edges only enter to b+ and only leave b−.
Than, in the first phase we do a Breadth First Search

(BFS) traversal started from f taking the edges in normal
direction, and visit all the vertices in the same component,
these are a and b+. These are the vertices greater than f (see
Definition 4), so a.V + and b+.V + are set to true. The BFS
taking the edges in reverse direction finds b−, which is the
only vertex less than f , so b−.V − = true. Finally, Phase 1
computes the edges going out from f belonging to the trees
rooted at a and b. Now, hP

f (b) = (f, a), hS
f (b) = (f, b),

hP
f (a) = (f, a), hS

f (a) = hS
f (b) = (f, b).

Phase 2 computes the edges for the remaining vertices. First,
hP

f (d) = hP
f (b) = (f, a) and hS

f (d) = hS
f (b) = (f, b) is set.

Procedure 3 SetEdge(vertex x)
1: # Both, or neither is NULL
2: if hP

u (x) = NULL ∧ hS
u(x) = NULL then

3: SetEdge(rx)
4: hP

u (x) = hP
u (rx)

5: hS
u(x) = hS

u(rx)
6: end if

Algorithm 4 Computing the primary and secondary edges for
all root d, (hP

u (d), hS
u(d)) going out from vertex u.

1: For all d ∈ V (G) set hP
u (d) = NULL and hS

u(d) =
NULL. Use Algorithm 2 for computing a spanning
GADAG D with a given r as root (G and r are exactly
the same for each node, so the found GADAG is the
same). Create digraph D′ by splitting the local root ru

into two vertices, so that edges only enter to vertex r+
u

and only leave r−u . For each vertex x set x.V + = false
and x.V − = false. If u = r (r has no local root), do not
split any of the vertices.

2:
3: # Phase 1: vertices in the same component
4:
5: Do a BFS traversal on D′ from u taking the edges in

normal direction. Do not visit vertex x, if x 6= r+
u ∧

x.localRoot 6= u∧x.localRoot 6= u.localRoot. At visited
vertex x set x.V + = true, and set hP

u (x) to the first edge
along the path to x computed by the BFS.

6: Do a BFS traversal on D′ from u taking the edges in
reverse direction. Do not visit vertex x, if x 6= r−u ∧
x.localRoot 6= u∧x.localRoot 6= u.localRoot. At visited
vertex x set x.V − = true, and set hS

u(x) to the first edge
along the path to x computed by the BFS.

7: set hP
u (ru) = hP

u (r+
u)

8: set hS
u(ru) = hS

u(r−u)
9: for all vertex x 6= u, x.localRoot = u.localRoot

10: if x.V + = true then
11: set hS

u(x) = hS
u(ru)

12: else if x.V − = true then
13: set hP

u (x) = hP
u (ru)

14: else
15: set hP

u (x) = hS
u(ru)

16: set hS
u(x) = hP

u (ru)
17: end if
18: end for
19:
20: # Phase 2: other components
21:
22: set hP

u (r) = hP
u (ru)

23: set hS
u(r) = hS

u(ru)
24: for all vertex x 6= r ∧ x 6= u
25: SetEdge(x)
26: end for

7

Than, suppose that next c is processed. Procedure 3 is called,
which sets hP

f (c) = hP
f (d) = (f, a) and hS

f (c) = hS
f (d) =

(f, b). Finally, hP
f (e) = hP

f (d) = (f, a) and hS
f (e) = hS

f (d) =
(f, b) are set. All the computed edges are presented on Table I,
but note that any given node computes only a single row of
this table.

Definition 4: Let D be a spanning GADAG of graph G with
the component set C, and let A ∈ C. Split the root vertex rA

in A into two vertices, r+
A and r−A , in such a way that edges

only enter to r+
A and only leave r−A . Let this new graph be A′.

Define a relation (≺) on V (A′) as follows: u ≺ v if and only
if there is a directed path from u to v in A′ (u, v ∈ V (A′)).

Generalize this relation; for given vertex x and y let x � y
be true, if x ≺ y or x ≡ y. Let V +

u and V −
u be the set of

vertices definitely greater and definitely less than u.
Remark: It is easy to see that (V (A′), (�)) makes up a

bounded partially ordered set (poset); since A′ is a DAG, (�)
is reflexive, transitive and antisymmetric. Additionally, since
edges only leave r−A , the minimum element is exactly r−A .
Similarly, r+

A is the maximum element.
For proving the correctness and completeness of Algo-

rithm 4, one more simple lemma is needed.
Lemma 6: In a spanning GADAG with component set C

found by Algorithm 2, there is exactly one edge entering rA

in each component A ∈ C.
Proof: If |V (A)| = 2, the claim is trivial. If |V (A)| > 2,

A is weakly 2-vertex-connected, so all the vertices of A can
be reached in the original undirected graph without rA. Thus,
when the DFS enters to A throw rA, it gets back to rA only
when all the vertices of A are visited, so rA has only one child.
Moreover, when current = rA, Algorithm 2 finds all the ears
in A with rA as endpoint. Since there is only one child, there
is only one among these ears, which has rA as both endpoints.
Therefore, there must be only one edge, which enters rA.

Theorem 1: Let an undirected connected graph G and ver-
tex d be given. For all u ∈ V (G), interleaving the edges
hP

u (d) and hS
u(d) computed by Algorithm 4 makes up a pair

of maximally redundant trees rooted at d.
Proof: Let D be the computed GADAG, and let its global

root be r. Let the set of components of D be C. In this proof
we will use the ordering in Definition 4. Since this proof
is complicated we divided it into three parts: the algorithm
terminates, the computed edges inside a component make up
two vertex-disjoint paths and the computed edges make up
maximally redundant paths to other vertices.

The algorithm terminates: First, we prove that Algorithm 4
always terminates and computes two edges, hP

u (d) and hS
u(d),

for any given vertex d. It is trivial that Phase 1 always
terminates. Suppose that there is vertex d, such that there is
A ∈ C, d, u ∈ A and either hP

u (d) or hS
u(d) is still NULL

after Phase 1. If u = rd, both traversals reach d, so hP
u (d) and

hS
u(d) are set. Otherwise, if d.localRoot = u.localRoot, both

d.V + and d.V − cannot be true, since in this case both BFS
traversals would reach d, which is impossible, since all the
cycles in A contains ru = rA. If only one of d.V + and d.V − is
true, then one of the edges is computed by the BFS traversals,
the other one is set at Line 11 or Line 13. Since if none of
them is true, the edges are set at Line 15, the only possibility

is d = ru. However, r+
u .V + = true and r−u .V − = true, so

both hP
u (ru) and hP

u (ru) are set at Line 7.
Phase 2 terminates if Procedure 3 terminates. Since the

recursion gets always to the local root, sooner or later r is
reached. Since r is already computed, Phase 2 terminates.
Trivially, both hP

u (d) and hS
u(d) are computed.

Interleaving the edges makes up two vertex-disjoint paths
inside a component: First suppose that there is A ∈ C, such
that u, d ∈ A. In this case interleaving the edges must make
up a pair of vertex-disjoint paths towards the root.

We show that for two vertices v, w : v ≺ w, what we obtain
by following the primary outgoing edges hP (w) is a loop-free
v → w path. Let hP

v (w) = (v, x). Using this edge, we either
get to w, when x = w, or get to a vertex x where v ≺ x.
Moreover, x ≺ w, since (v, x) is the first edge along a path
from v to w, so there is a path from x to w too. Therefore, if
x 6= w, we can repeat the same reasoning till we eventually
arrive to w. Along the similar lines, following hS(w) yields a
loop-free v → w path for v, w : v � w.

If d = rA or u = rA, the two paths are trivially disjoint.
Suppose d 6= rA, u 6= rA and there is an ordering between
u and d, say u ≺ d. Now, following hP (d) yields an u → d
path pp (the path marked by solid arrow in Figure 6a), and
following hS(d) yields first a u → r−A path p1

s and then
an r+

A → d path p2
s (dashed arrow in Figure 6a). Based

on the observation above, these subpaths are indeed paths
and they are loop-free. The concatenation of p1

s and p2
s gives

the secondary path ps. Finally, pp and ps are vertex-disjoint:
vertices along pp belong to the interval [u, d], p1

s to [r−A , u]
and p2

s to [d, r+
A], and these intervals are disjunct except the

endpoints.
If there is no ordering between u and d, the situation is

slightly more difficult: following hP (d) first yields an u→ x
path p1

p and then a x→ d path p2
p, where x is the first vertex,

which u � x and x ≺ d holds for (see the dashed arrows
in Figure 6b). Similarly, hS(d) yields first a u → y path p1

s

and then an y → d path p2
s for the first y : u ≺ y and

y � d (solid arrows in Figure 6b). Again, concatenation of
the corresponding subpaths yields two vertex-disjoint paths:
first, p1

p and p1
s are vertex-disjoint because p1

p ∈ V −
u , p1

s ∈ V +
u

and V −
u ∩ V +

u = ∅; second, p1
p and p2

s are also vertex-disjoint
because the vertices of p1

p are not ordered with respect to d
but those of p2

s are; third, pp and ps cannot both traverse r,
because r+ � y (since only one edge goes into r (Lemma 6),
we have a vertex m for which m � v : v ∈ V \ {r+, m},
so the secondary path turns back in m at the very latest).
Similar reasoning applies to see that the rest of the subpaths
are mutually vertex-disjoint too.

Interleaving edges makes up maximally redundant paths:
Suppose that u and d are not in the same component. Create
digraph T , and let V (T) = C∪{r}. For all A ∈ C, r ∈ A add
edge (A, r) to T . Moreover, for all A,B ∈ C, rA 6= rB∧rB ∈
A add edge (B, A) to T . Since a local root is always on the
path to r, r is reachable on a directed path from any vertex
in T , so T is weakly connected. Moreover, T is a directed
tree, since every component has only one local root, so there
is only one edge going out from each x ∈ V (T) \ {r} and no
edge leaves r, so |E(T)| = |V (T)| − 1.

8

Vertex hP (a) hS(a) hP (b) hS(b) hP (c) hS(c) hP (d) hS(d) hP (e) hS(e) hP (f) hS(f)

a – – (a, b) (a, f) (a, b) (a, f) (a, b) (a, f) (a, b) (a, f) (a, b) (a, f)
b (b, f) (b, a) – – (b, e) (b, e) (b, e) (b, e) (b, e) (b, e) (b, f) (b, a)
c (c, d) (c, e) (c, d) (c, e) – – (c, d) (c, e) (c, d) (c, e) (c, d) (c, e)
d (d, e) (d, c) (d, e) (d, c) (d, e) (d, c) – – (d, e) (d, c) (d, e) (d, c)
e (e, b) (e, b) (e, b) (e, b) (e, c) (e, d) (e, c) (e, d) – – (e, b) (e, b)
f (f, a) (f, b) (f, a) (f, b) (f, a) (f, b) (f, a) (f, b) (f, a) (f, b) – –

Table I: The edges of maximally redundant trees computed using GADAG depicted in Figure 5.

(a) ordered case (b) unordered case

Figure 6: Illustration for Theorem 1.

Let the component closest to r in T containing u be U , and
similarly let the closest component containing d be D (here
closest means that the path from U or D to r has minimum
number of vertices). If U is on the path from D to r in T ,
Procedure 3 finds cut-vertex x in the component closest to D
containing u, and sets hP

u (d) = hP
u (x) and hS

u(d) = hS
u(x).

Since any path from u to d contains x, the walks leave each
component at the right vertex, so both walks are paths and
reach d. If U is not on the path from D to r, then Procedure 3
sets hP

u (d) = hP
u (r) and hS

u(d) = hS
u(r). In this way, the

walks go up towards r in T until it reaches the first vertex X ,
which is on the path from D to r, so there is no cycle again,
and the walks are paths. Since the paths inside a component are
vertex-disjoint, the two paths are maximally vertex-disjoint.

Finally, we only need to show that Algorithm 4 is linear in
the number of edges.

Theorem 2: The computational complexity of Algorithm 4
is O(|E(G)|) for any connected graph.

Proof: Computing GADAG D and doing the BFS traver-
sals need O(|E(G)|) time. The main question is the complex-
ity of Procedure 3. Each time Procedure 3 is called recursively
(from the procedure), a vertex x is needed with hP

u (x) =
NULL and hS

u(x) = NULL, so it can be called recursively
at most O(|V (G)|) times altogether. Since it is called from
Algorithm 4 |V (G)| − 2 times, the overall complexity of the
algorithm is O(|V (G)|+ |E(G)|) = O(|E(G)|) (the graph is
connected).

V. OPTIMIZATION

Previously, an algorithm finding a pair of maximally redun-
dant trees rooted at each of the vertices was discussed. There,
the attributes of the trees found were not considered important.
Unfortunately, this is usually not true.

A very common requirement, paths in networks must
meet, is to minimize the length of paths with respect to
some edge length function. Probably, the most important
networks, where this this kind of optimization is needed are the
IP networks. Unfortunately, minimizing paths with arbitrary

length function can not be done in linear time but only in
O(|V (G)| log |V (G)|+ |E(G)|) with Dijkstra’s algorithm. In
contrast, if edges have uniform lengths, BFS traversal can also
find the shortest paths in linear, O(|E(G)|), time; these are the
paths containing the minimum number of vertices.

Observe that the situation is the same for maximally redun-
dant trees as well. When the spanning GADAG is computed,
Algorithm 4 computes the paths to greater and lesser vertices
at Line 5 and Line 6 using BFS. In this way, optimal always
increasing and always decreasing paths are found in the
GADAG for uniform edge length, but for arbitrary lengths
these paths are suboptimal.

Fortunately, the exact way of finding increasing and decreas-
ing paths is not important, therefore the BFS traversals can
be exchanged to two runs of Dijkstra’s algorithm. However,
this is a trade-off, since using Dijkstra’s algorithm would ruin
linearity. In this paper we choose conserving linear complexity
even with path minimization, thus we assume uniformly 1 edge
lengths in the sequel (we minimize the number of vertices
along the paths). Nevertheless, all the following techniques
can be applied with simply exchanging the BFS traversals to
Dijkstra’s algorithm, but in this case the overall complexity
becomes O(|V (G)| log |V (G)|+ |E(G)|).

Assuming uniform edge lengths, the most important as-
pect influencing the number of vertices along the paths of
maximally redundant trees is the spanning GADAG; using
a “better” GADAG, BFS traversals can find better paths.
Observe that when a GADAG is found, there can be some
edges in the original graph, which are not used in either
direction. Adding these edges in a direction, which keeps up
the GADAG property may reduce the length of paths.

Moreover, observe that for any vertex v, optimizing the
whole spanning GADAG is not necessary; it is enough to add
some edges to the components of the GADAG, which contain
v. Since paths towards vertices in different components are
just paths towards a decent cut-vertex, optimizing the paths in
the local components optimizes all the paths.

Unfortunately, note that simply keeping up the GADAG
property is not enough, since Algorithm 4 needs special
spanning GADAG, which fulfills Lemma 6 too. Therefore,
adding edge in the direction entering the local root must also
be avoided.

Considering these observations, it is possible to construct
some simple linear time heuristics for some vertex v:

• Compute GADAG D of graph G with set of components
C.

• For all A ∈ C, where v ∈ V (A), remove the single edge
entering into rA. Make a topological ordering where rA is
the minimum element. Edges of G, used in D in neither

9

Figure 7: A sample graph and a spanning GADAG.

direction, can be added in a direction such that the source
is the lower, the target is the higher vertex with respect
to the topological ordering.

Trivially, in this way the GADAG property is kept up, and
no new edge entering a local root is added. Moreover, since
topological ordering is linear, these heuristics do not increase
the complexity of the algorithm.

As a simple example, consider the graph depicted on
Figure 7. Observe that edge {c, e} is used in neither direction,
so use the optimization. Since there is only one weakly 2-
vertex-connected component, the optimization is the same for
all the vertices. With removing the single edge entering to
root d, there can be one topological ordering with d as the
minimum element: d, e, f, a, b, c. Since e ≺ c with respect to
this ordering, edge (e, c) can be added to the GADAG.

Note that these heuristics can not only decrease but some-
times increase the length of paths. Trivially, when two vertices
in the same component are ordered, these heuristics definitely
cannot increase the path length. On the other hand, when
vertices are not ordered, the turning point, vertex x and y
on Figure 6b, may get closer to the local root and farther
from d. In the next section we prove by extensive simulations
that in average these heuristics decrease the lengths of paths
significantly.

VI. EVALUATION

In the previous section some linear time heuristics were
proposed for decreasing the path lengths in maximally re-
dundant trees (recall, that uniform link cost is supposed).
Unfortunatelly, in some special cases using these heursitics the
lengths of paths can increase. In this section we use extensive
simulations in order to prove that in average our heuristics
singnificantly shorten the paths.

Since redundant trees can be applied in communication net-
works, we used the topology of real and randomly generated
artificial networks. The selected real networks are the Abilene,
NSF, AT&T and 50 node German backbone network from
[26], and the Italian, German and European Cost266 backbone
network from [27]. For each of these networks, we computed
the maximally redundant trees with respect to each vertex as
root, and we averaged the length of the resultant paths.

Random network topologies were generated by Boston
university Representative Internet Topology gEnerator
(BRITE) [30], using Waxman’s algorithm, with random node
placement and parameters α = 0.15 and β = 0.2. The root

of the generated GADAG was selected randomly in each
case. The number of node varied between 20 and 50 and the
number of neighbors was 2 and 3. In each case we made
250 000 random experiments in order to well approximate
the expected value of the lengths of paths with the mean of
the results.

Since several real topologies are 2-vertex-connected, when
no failure exists, for these topologies we computed two opti-
mal vertex disjoint paths using Suurballe’s algorithm. More-
over, we also implemented the heuristics proposed by Xue et.
al. in [15], [3] for minimizing the path lengths of redundant
trees. The mean of the lengths of path pairs computed by
these two algorithms and the lengths of paths computed by
Algorithm 4 with and without heuristics are presented on
Table II and Table III.

One may observe that paths get significantly shorter when
the heuristics poposed in Section V are applied. Unfortunately,
these paths are significantly longer than the optimal ones are.
Thus, we can identify an interesting trade-off here: using
our maximally redundant tree algorithm instead of Suur-
balle’s algorithm or Xue’s heuristics is clearly advantageous
in performance-sensitive applications, because its complexity
is much smaller (linear, O(|E|)) than that of Suurballe’s
algorithm (for all the vertex pairs O(|V (G)|3 log |V (G)|))
or that of Xue’s heuristics (a tree rooted at each vertex is
O(|V (G)|3(|E(G)|+|V (G)| log |V (G)|))). On the other hand,
our technique gives suboptimal protection paths, whose length
may be significantly larger than the optimal path length. Our
simulations reveal that the increase is at most two-fold, which
is not necessarily poses difficulties if these paths are only used
for protection in out-of-order situations, which, supposedly,
only last a couple of seconds, and the default paths can still
be optimal shortest paths. But perhaps most importantly, our
algorithm is much better suited to certain applications, namely
those based on the hop-by-hop forwarding paradigm like IP,
because in these applications we only need the next-hops along
the recovery trees instead of the entire protection paths as
returned by Suurballe’s or Xue’s algorithm. In the next section,
we present such an application.

VII. LIGHTWEIGHT NOT-VIA

Previously, the way of computing a pair of maximally
redundant trees rooted at each node was discussed. In this
section we present an application of this concept. Observe,
that maximally redundant trees can also be applied, where
redundant trees are used, so the concept proposed in this paper
is not limited to this example. Moreover, note that maximally
redundant trees can be especially useful for providing 1+1
protection or load sharing.

Lightweight Not-via [25] is an advanced variant of the
IP Fast ReRoute (IPFRR) [31] mechanism named Not-via
addresses [32]. Since IPFRR, Not-via and Lightweight Not-
via is not in the main scope of this paper, here we only briefly
discuss them.

Nowadays, significant efforts are taken in order to endow
traditional IP with protection capabilities. Since traditional
IP is based only restoration techniques like OSPF [33] or

10

Network Node number Suurballe Xue Prim. path Sec. path Prim. path Sec. path
without heur. without heur. with heur. with heur.

Abilene 12 – – 210% 212% 168% 171%
Germany 17 135% 136% 231% 230% 191% 190%
AT&T 22 – – 221% 224% 166% 167%
NSF 26 121% 124% 224% 222% 178% 174%
Italy 33 – – 248% 247% 175% 174%
Cost266 37 129% 154% 250% 253% 190% 194%
Germany50 50 118% 160% 304% 309% 212% 214%

Table II: Average number of vertices on paths of maximally redundant trees in real word networks (100% is the path with
minimum number of vertices).

Node number Neighbors Suurballe Xue Prim. path Sec. path Prim. path Sec. path
without heur. without heur. with heur. with heur.

20 2 120% 147% 217% 224% 173% 174%
20 3 116% 155% 298% 313% 180% 181%
30 2 120% 147% 235% 243% 182% 182%
30 3 115% 152% 332% 352% 190% 190%
40 2 119% 148% 250% 259% 190% 189%
40 3 114% 151% 361% 385% 198% 197%
50 2 118% 148% 263% 273% 197% 195%
50 3 113% 150% 388% 415% 205% 203%

Table III: Average number of vertices on paths of maximally redundant trees in artificial networks (100% is the path with
minimum number of vertices).

IS-IS [34], its recovery capabilities prove themselves to be
insufficient more and more often with the spreading of real
time traffic, like IPTV, VoIP, stock exchange transactions or
on-line gaming. Therefore, IPFRR techniques are expected
to provide recovery fast enough even for these applications;
usually it is said that IPFRR must provide recovery in 50 ms
at most, like SDH/SONET [35] does.

In contrast to traditional IP recovery, IPFRR mechanisms
are always proactive and reroute packets locally. Proactive
manner means that the way of avoiding a given resource is
computed long before any failure shows up. Local rerouting
describes the manner that routers using IPFRR do not need
to advertise the fact of the failure (since it needs some time),
and packets can be rerouted, when only the neighbors of the
failed resource know the presence of the failure.

Not-via uses special IP addresses, called not-via addresses,
in order to provide local rerouting. When a failure occurs,
the neighbor of the failed resource puts the packets in an IP-
in-IP tunnel with a special destination address. This address
describes not only the endpoint of the tunnel, where packets
are needed to be decapsulated, but also the failed resource.
Therefore, Not-via needs significant number of protection
addresses. Fortunately, since these addresses are not used glob-
ally, local IP address domains (like 10.x.x.x or 192.168.x.x)
can be used. On the other hand, this high number of IP
addresses rises significant management problems.

In order to mitigate these management problems,
Lightweight Not-via was proposed. Lightweight Not-via
uses vertex-redundant trees for recovery. If there is no failure
in the network, packets are forwarded along the shortest paths,
like Not-via does. Moreover, if a failure occurs, packets are
encapsulated into an IP-in-IP tunnel with a special destination
address. In contrast to traditional Not-via, the recovery
addresses of Lightweight Not-via do not describe exactly the
failed resource, instead it describes a vertex-redundant tree.

Since in the case of a single link or node failure, the root of a
pair of vertex-redundant trees can be reached on at least one
of the trees, Lightweight Not-via can protect all the single
failures.

As an example, consider the graph depicted on Figure 1
as a network, and suppose that node a tries to send some
packets to d. Moreover, suppose that the shortest path from a
to d is a→ b→ c→ d and node c is down. Node a does not
know anything about the failure, since we have local rerouting,
therefore it sends packets to b as usual. Node b is the neighbor
of the failed resource, so it reroutes the packets locally. Since
it knows that both the shortest path and the redundant tree
depicted by solid arrows are failed, it encapsulates the packets
into an IP-in-IP tunnel with a special IP address telling all the
nodes to forward the packet to d along the dashed redundant
tree rooted at d. Since the trees are vertex-redundant, packets
reach d along path a→ b→ e→ d. If link {c, d} is the failed
resource, c is the one rerouting, and packets are forwarded
along path a→ b→ c→ b→ e→ d. Note that not always the
destination, but the next-next hop is the endpoint of the tunnel,
since this behavior makes the failure as local as possible.

Naturally, this technique can be applied only in 2-vertex-
connected networks, since vertex-redundant trees are needed.
In contrast, if we simply change redundant trees to maximally
redundant trees this limitation is lifted. Although finding the
2-vertex-connected components and sending packets their exit
points could help for plain redundant trees, observe that this
is exactly what is done by the algorithm finding maximally
redundant trees. On the other hand, using the concept of max-
imally redundant trees, gives not only a cleaner solution, which
is easier to debug, but makes it unnecessary to differentiate
between normal and cut-vertices, which problem is known as
“bridge problem”, and rises several special cases.

11

VIII. CONCLUSIONS

In this paper we improved the concept of redundant trees. In
contrast to redundant trees which can be found only in 2-edge-
or 2-vertex-connected graphs, maximally redundant trees can
be found in arbitrary connected graphs. Since maximally
redundant trees can provide maximum redundancy for all
networks, they can be applied in any connected network, even
in ones, where redundant trees can not be found. Moreover,
since maximally redundant trees are edge-redundant or vertex-
redundant, when such trees exist, these trees can be applied
with no modification in any network using traditional redun-
dant trees. Moreover, we presented a linear time algorithm for
computing the maximally redundant trees rooted at not only
one, but all the vertices.

Using the results of this paper, we improved Lightweight
Not-via, an advanced version of IPFRR mechanism Not-via,
which has probably the most significant IETF and industrial
backing currently. Naturally, our results are not limited to
IPFRR; since redundant trees are applied in various environ-
ments such as sensor networks or optical networks, maximally
redundant trees can be applied in the same fields too.

REFERENCES

[1] M. Médard, R. A. Barry, S. G. Finn, and R. G. Galler, “Redundant trees
for preplanned recovery in arbitary vertex-redundant or edge-redundant
graphs.” IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp. 641–
652, Oct 1999.

[2] M. Médard, R. A. Barry, S. G. Finn, W. He, and S. S. Lumetta,
“Generalized loop-back recovery in optical mesh networks,” IEEE/ACM
Transactions on Networking, vol. 10, no. 1, pp. 153–164, Feb 2002.

[3] G. Xue, L. Chen, and K. Thulasiraman, “Quality-of-service and quality-
of-protection issues in preplanned recovery schemes using redundant
trees,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 8, pp. 1332–1345, October 2003.

[4] R. D. D. Wang, G. Li, “Igp weight setting in multimedia ip networks,”
in IEEE Infocom Mini’07, 2007.

[5] J. Edmonds, “Edge-disjoint branchings,” Combinatorial Algorithms, pp.
91–96, 1973.

[6] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,” in SFCS ’84: Proceedings of the 25th Annual
Symposium on Foundations of Computer Science, 1984. Washington,
DC, USA: IEEE Computer Society, 1984, pp. 137–147.

[7] D. Handke, “Independent tree spanners,” in Graph-Theoretic Concepts
in Computer Science, 1998, pp. 203–214.

[8] F. Annexstein, K. Berman, and R. Swaminathan, “Independent spanning
trees with small stretch factors,” Tech. Rep., 1996.

[9] A. Zehavi and A. Itai, “Three tree-paths,” Journal of Graph Theory,
vol. 13, no. 2, pp. 175–188, 1989.

[10] A. Huck, “Independent trees in graphs,” Graphs and Combinatorics,
vol. 10, no. 1, pp. 29–45, 1994.

[11] K. Miura, D. Takahashi, S.-I.Nakano, and T. Nishizeki, “A linear-time
algorithm to find four independent spanning trees in four-connected
planar graphs,” in WG ’98: Proceedings of the 24th International
Workshop on Graph-Theoretic Concepts in Computer Science. London,
UK: Springer-Verlag, 1998, pp. 310–323.

[12] S. Curran, O. Lee, and X. Yu, “Chain decompositions and independent
trees in 4-connected graphs,” in SODA ’03: Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2003, pp.
186–191.

[13] S. Curran, O. Lee, and X. Yu, “Finding four independent trees,” SIAM
Journal on Computing, vol. 35, no. 5, pp. 1023–1058, 2006.

[14] G. Xue, L. Chen, and K. Thulasiraman, “Qos issues in redundant trees
for protection in vertex-redundant or edge-redundant graphs,” in IEEE
International Conference on Communications (ICC), vol. 5, 2002, pp.
2766–2770.

[15] G. Xue, L. Chen, and K. Thulasiraman, “Delay reduction in redundant
trees for preplanned protection against single link/node failure in 2-
connected graphs,” in IEEE Globecom, November 2002.

[16] G. Xue, L. Chen, and K. Thulasiraman, “Cost minimization in redundant
trees for protection in vertex-redundant or edge-redundant graphs,” in
PCC ’02: Proceedings of the Performance, Computing, and Communi-
cations Conference, 2002. on 21st IEEE International. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 187–194.

[17] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Linear time con-
struction of redundant trees for recovery schemes enhancing QoP and
QoS,” INFOCOM 2005, pp. 2702–2710, March 2005.

[18] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Faster algorithms
for construction of recovery trees enhancing qop and qos,” IEEE/ACM
Trans on Networking, vol. 16, no. 3, pp. 642–655, 2008.

[19] S. Ramasubramanian, “Supporting multiple protection strategies in op-
tical networks,” Department of Electrical and Computer Engineering,
University of Arizona, Tech. Rep., November 2004.

[20] P. Thulasiraman, S. Ramasubramanian, and M. Krunz, “Disjoint mul-
tipath routing in dual homing networks using colored trees,” in IEEE
Globecom, November/December 2006, pp. 1–5.

[21] R. Balasubramanian and S. Ramasubramanian, “Minimizing average
path cost in colored trees for disjoint multipath routing,” in 15th
International Conference on Computer Communications and Networks,
ICCCN 2006, October 2006, pp. 185–190.

[22] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, “Disjoint
multipath routing using colored trees,” Computer Networks, vol. 51,
no. 8, pp. 2163–2180, 2007.

[23] S. Ramasubramanian, M. Harkara, and M. Krunz, “Linear time dis-
tributed construction of colored trees for disjoint multipath routing,”
Computer Networks, vol. 51, no. 10, pp. 2854–2866, 2007.

[24] G. Jayavelu, S. Ramasubramanian, and O. Younis, “Maintaining colored
trees for disjoint multipath routing under node failures,” IEEE/ACM
Transactions on Networking, vol. 17, no. 1, pp. 346–359, 2009.

[25] G. Enyedi, P. Szilágyi, G. Rétvári, and A. Császár, “Ip fast reroute:
Lightweight not-via,” in IFIP Networking, May 2009.

[26] “Survivable fixed telecommunication Network Design library (SNDlib),”
http://sndlib.zib.de.

[27] M. L. Garcia-Osma, “TID scenarios for advanced resilience,” Tech.
Rep., The NOBEL Project, Work Package 2, Activity A.2.1, Advanced
Resilience Study Group, Sep 2005.

[28] G. Enyedi, G. Rétvári, and A. Császár, “On finding maximally redundant
trees in strictly linear time,” in IEEE Symposium on Computers and
Communications, July 2009.

[29] S. Even and R. E. Tarjan, “Computing an st-numbering,” Theoretical
Computer Science, no. 2, 1976.

[30] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Boston
university Representative Internet Topology gEnerator,” http://www.cs.
bu.edu/brite, 2005.

[31] M. Shand and S. Bryant, “IP Fast Reroute framework,”
Internet Draft, available online: http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-framework-13, October 2009.

[32] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using Not-
via addresses,” Internet Draft, available online: http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-notvia-addresses-04, 2009.

[33] J. Moy, “OSPF version 2,” Internet Engineering Task Force: RFC 2328,
April 1998.

[34] I. O. for Standardization, “OSI IS-IS intra-domain routing protocol,”
ISO/IEC 10589:2002, 2002.

[35] J. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection
and Restoration of Optical, SONET-SDH, IP, and MPLS. Elsevier, 2004.

